78 research outputs found

    Large scale simulation of turbulence using a hybrid spectral/finite difference solver

    Get PDF
    Performing Direct Numerical Simulation (DNS) of turbulence on large-scale systems (offering more than 1024 cores) has become a challenge in high performance computing. The computer power increase allows now to solve flow problems on large grids (with close to 10^9 nodes). Moreover these large scale simulations can be performed on non-homogeneous turbulent flows. A reasonable amount of time is needed to converge statistics if the large grid size is combined with a large number of cores. To this end we developed a Navier-Stokes solver, dedicated to situations where only one direction is heterogeneous, and particularly suitable for massive parallel architecture. Based on an hybrid approach spectral/finite-difference, we use a volumetric decomposition of the domain to extend the FFTs computation to a large number of cores. Scalability tests using up to 32K cores as well as preliminary results of a full simulation are presented

    Direct numerical simulation of unsheared turbulence diffusing toward a free-slip or no-slip surface

    Get PDF
    The physics involved in the interaction between statistically steady, shearless turbulence and a blocking surface is investigated with the aid of direct numerical simulation. The original conguration introduced by Campagne et al. [ECCOMAS CFD 2006] serves as the basis for comparing cases in which the blocking surface can be either a free-slip surface or a no-slip wall. It is shown that in both cases, the evolutions of the anisotropy state are the same throughout the surface-influenced layer (down to the surface), despite the essentially different natures of the inner layers. The extent of the blocking effect can thereby be measured through a local (surface) quantity identically defined in the two cases. Examination of the evolution and content of the pressure-strain correlation brings information on the mechanisms by which energy is exchanged between the normal and tangential directions: In agreement with an earlier analysis by Perot and Moin [J. Fluid Mech. 295 (1995)], it appears that the level of the pressure strain correlation is governed by a splat/antisplat disequilibrium which is larger in the case of the solid wall due to viscous effects. However, in contradiction with the latter, the pressure-strain correlation remains as a signicant contributor to both Reynolds-stress budgets; it is argued that the net level of the splat/antisplat disequilibrium is set, in the first place, by the normal-velocity skewness of the interacting turbulent field. The influence of viscous friction on the intercomponent energy transfer at the solid wall only comes in the second place and part of it can also be measured by the skewness. The remainder seems to originate from interactions between the strain field and ring-like vortices in the vicinity of the splats

    Effet de blocage dans un écoulement turbulent non cisaillé

    Get PDF
    Un code de résolution des équations de Navier-Stokes pour un fluide incompressible a été développé en utilisant une approche mixte spectral/différences finies, compatible avec une mise en oeuvre dans un environnement massivement parallèle. On procède, grâce à ce nouvel outil, à des simulations directes de la turbulence dans une configuration où l'agitation est synthétisée à l'aide d'un forçage aléatoire. La production de turbulence est confinée dans une couche centrale du domaine et s'auto-diffuse en direction d'une surface libre ou d'une paroi adhérente. Dans cette configuration on obtient un état statistiquement stationnaire où le cisaillement moyen, généralement à l'origine de la production de la turbulence, est nul. Ces conditions permettent de mieux comprendre l'origine du transfert intercomposantes, caractéristique de la partie lente du terme de corrélation pression-déformation dans les équations-bilan des tensions de Reynolds. L'accent est mis sur l'analyse de ce transfert lorsqu'il s'effectue sous l'influence de l'effet de blocage au voisinage d'une surface. Les résultats obtenus permettront de mieux appréhender la modélisation des termes de corrélation pression-déformation au voisinage d'une paroi dans les modèles de fermeture au second ordre. ABSTRACT : A Navier-Stokes solver for incompressible flow has been developed using a mixed spectral/finite-difference approach, while being compatible with a massively parallel environment. We use it to perform direct numerical simulations in a situation where the turbulent agitation is synthesized under the action of a random forcing. The turbulence production is confined in a central layer and self-diffuses towards a free-slip or no-slip surface. With this set-up, we obtain a statistical steady state in which the mean shear, usually associated with the turbulence production, is zero. These conditions allow a better understanding of the intercomponent energy transfer, induced by the slow part of the pressure-strain correlation in the Reynolds tensor budget. We focus on this transfer when it occurs in combination with the blocking effect, in the vicinity of the surface. The results will help to model the pressure-strain correlation in a second- order-closure context

    Compressible turbulent channel flow with impedance boundary conditions

    Get PDF
    We have performed large-eddy simulations (LES) of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, M b = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Re b = 6900, have been investigated. For each M b , nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The IBCs are formulated in the time domain according to Fung and Ju 1 . The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The impedance adopted is a three-parameter, damped Helmholtz oscillator with resonant angular frequency, ω r , tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ω r = 2πM b (normalized with the speed of sound and channel half-width), reduces the IBC’s free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each M b . The application of the tuned IBCs results in a drag increase up to 300% for M b = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers with a well-defined streamwise wavelength, λ x , traveling downstream with advection velocity c x = λ x M b . They are the effect of intense hydro-acoustic instabilities resulting from the interaction of high-amplitude wall-normal wave propagation at the tuned frequency f r = ω r /2π = M b with the background mean velocity gradient. The resonance buffer layer is confined near the wall by (otherwise) structurally unaltered outer-layer turbulence. Results suggest that the application of hydrodynamically tuned resonant porous surfaces can be effectively employed in achieving flow control

    Reconstructing the history of the Antarctic ice sheet using internal reflecting horizons from radio-echo sounding

    Get PDF
    Understanding the contribution of the Antarctic Ice Sheet (AIS) to past and future sea-level rise has emerged as a scientific priority over the last four decades. Whilst our knowledge of ice-dynamical changes occurring as a result of current anthropogenic forcing has improved considerably since the start of the satellite era, significantly less is known about the evolution of the AIS during the pre-industrial Holocene (the last ~11.7 thousand years; ka). Quantifying these changes is crucial, however, as this time period corresponds to a time when the ice sheet was retreating from its maximal extent at the Last Glacial Maximum (LGM; ~20 ka) and environmental conditions were similar to today. Therefore, improving our understanding of this period may provide a long-term context to the decadal changes observed in recent times and how these may evolve in the future. Whilst point-based geochronological measurements of ice and sediment cores, or surface exposure dating, can be used to assess past ice-sheet changes over the AIS, it remains unclear how representative they are of a wider region. A complementary and spatially extensive resource across the ice sheet are Internal Reflecting Horizons (IRHs) as imaged by Radio-Echo Sounding (RES) techniques, which provide a cumulative record of accumulation, basal melt and ice dynamics that, if dated precisely at ice cores, can be used to inform numerical ice-sheet models projecting past and future changes on large spatial scales. The aim of this thesis is therefore to develop and extend age-depth models from IRHs across the AIS to assess the past stability of the ice sheet. In this thesis, an age-depth model of Pine Island Glacier spanning the LGM and Holocene periods is derived from spatially extensive IRHs. The connection between RES profiles and the WAIS Divide ice core enables the direct dating of the IRHs, and reveals that they match large peaks in sulphate concentrations which are unparalleled in the 68,000 year-old record, thus suggesting that the cause of these IRHs is from past explosive volcanic eruptions. By connecting this IRH stratigraphy with a previously developed age-depth model across the Institute and Möller Ice Streams (IMIS), I show that a precisely dated age-depth model now exists over 20% of the West Antarctic Ice Sheet (WAIS). One of these IRHs, precisely dated at ~4.7 ka, is then used as input into a one-dimensional ice-flow model to estimate past accumulation rates during the mid-Holocene over the catchments encompassing Pine Island Glacier, Thwaites Glacier, and IMIS, together representing 30% of the WAIS. The inferred mid-Holocene accumulation estimates are then compared with modern rates derived from climate models and observational measurements to show that accumulation rates were 18% greater during the last five millennia compared to the present over the Amundsen-Weddell-Ross Divide. These results match previous findings from isolated ice-core measurements and spatially targeted studies over the divide, and correspond to periods of grounding line retreat and readvance during the Holocene over the WAIS. Together, these show the potential for extracting further IRH information from other sectors of the AIS in order to build an age-depth model of the ice sheet. However, the underlying RES data necessary for this work were, until recently, relatively inaccessible to the wider scientific community, thus restricting the extraction and interpretation of age-depth models across the AIS. This motivated the release of ~300,000 line-km of RES profiles acquired by the British Antarctic Survey between 2004 and 2020. In addition to standardising and releasing these data, this thesis shows that large sections of continuous englacial layering exist widely across both East and West Antarctica, suggesting that, together with previously developed age-depth models of both regions and nearby ice-core stratigraphies, these newly released RES datasets will be critical in our aim to build an ice-sheet wide age-depth model of Antarctica, as motivated by the AntArchitecture Initiative. Together, the findings from this thesis reveal the spatially extensive nature of IRHs across West and East Antarctica and demonstrate how these can be used to infer past ice-sheet changes. This thesis also highlights the need to extract further age-depth models, particularly across East Antarctica, in order to provide important boundary conditions such as past accumulation rates and ice-elevation change which can be used by numerical ice-sheet models to help improve predictions of past and future ice-sheet change and ensuing sea-level rise contributions

    Simulations of shock wave/turbulent boundary layer interaction with upstream micro vortex generators

    Get PDF
    The streamwise breathing motion of the separation bubble, triggered by the shock wave/boundary layer interaction (SBLI) at large Mach number, is known to yield wall pressure and aerodynamic load fluctuations. Following the experiments by Wang et al. (2012), we aim to evaluate and understand how the introduction of microramp vortex generators (mVGs) upstream the interaction may reduce the amplitude of these fluctuations. We first perform a reference large-eddy simulation (LES) of the canonical situation when the interaction occurs between the turbulent boundary layer (TBL) over a flat plate at Mach number M=2.7 and Reynolds number Reθ=3600 and an incident oblique shock wave produced on an opposite wall. A high-resolution simulation is then performed including a rake of microramps protruding by 0.47δ in the TBL. The long time integration of the simulations allows to capture 52 and 32 low-frequency oscillations for the natural case and controlled SBLI, respectively. In the natural case, we retrieve the pressure fluctuations associated with the reflected shock foot motions at low-frequency characterized by StL=0.02−0.06. The controlled case reveals a complex interaction between the otherwise two-dimensional separation bubble and the array of hairpin vortices shed at a much higher frequency StL=2.4 by the mVGs rake. The effect on the map of averaged wall shear stress and on the pressure load fluctuations in the interaction zone is described, with a 20% and 9% reduction of the mean separated area and pressure load fluctuations, respectively. Furthermore, the controlled SBLI exhibits a new oscillating motion of the reflected shock foot, varying in the spanwise direction with a characteristic low-frequency of StL=0.1 in the wake of the mVGs and StL=0.05 in between

    LES of shock wave/turbulent boundary layer interaction affected by microramp vortex generators

    Get PDF
    At large Mach numbers, the interaction of an oblique shock wave with a turbulent boundary layer (SWTBLI) developing over a flat plate gives rise to a separation bubble known to exhibit low-frequency streamwise oscillations around StL = 0.03 (a Strouhal number based on the separated region length). Because these oscillations yield wall pressure or load fluctuations, efforts are made to reduce their amplitude. We perform large eddy simulations to reproduce the experiments by Wang etal (2012) where a rake of microramp vortex generators (MVGs) were inserted upstream the SWTBLI with consequences yet to be fully understood. There is no consensus on the flow structure downstream MVGs and this is first clarified in the case of MVGs protruding by 0.47δ in a TBL at Mach number M = 2.7 and Reynolds number Reθ = 3600. Large-scale vortices intermittently shed downstream the MVGs are characterized by a streamwise period close to twice the TBL thickness and a frequency f ≈ 0.5Ue/δ, two orders of magnitude higher than the one of the uncontrolled SWTBLI. We then characterize the interaction between the unsteady wake of the MVGs with the SWTBLI resulting in the reduction of the interaction length and the high-frequency modulation of the shock feet motions
    corecore